
MEDIDAS DE ESTADÍSTICA DESCRIPTIVA

(Tomado de:

http://www.universidadabierta.edu.mx/SerEst/MAP/METODOS%20CUANTITATIVOS/Pye/tema_12.htm)

UNIDAD I. ESTADISTICA

1.2 Medidas Descriptivas

MEDIDAS DE TENDENCIA CENTRAL.

Una de las características más sobresalientes de la distribución de datos es su tendencia a acumularse hacia el centro de la misma. Esta característica se denomina Tendencia central.

Las medidas de tendencia central más usuales son:

- a) media aritmética (x), el valor medio.
- b) mediana, el valor central.
- c) moda, el valor más frecuente.

Media aritmética.

La media aritmética de n valores, es igual a la suma de todos ellos dividida entre n. Tenemos:

$$x = \sum_{\mathbf{n}} x$$

Si se cuenta con una distribución de datos entonces se aplica la fórmula:

$$\overline{x} = \sum_{\mathbf{N}} \mathbf{f} \mathbf{X}$$

EJEMPLO:

Mediante los siguientes datos hallar la media aritmética.

10,8,6,5,10,7

SOLUCION:

$$\overline{x} = \frac{10 + 8 + 6 + 5 + 10 + 9}{6} = 8$$

EJEMPLO:

Mediante la siguiente distribución de frecuencias que nos muestra los espesores en pulgadas, de recipientes de acero, hallar la media aritmética.

Espesores en pulg	f
0.307 - 0.310	3
0.311 - 0.314	5
0.315 - 0.318	5
0.319 - 0.322	22
0.323 - 0.326	14
0.327 - 0.330	1
	N= 50

SOLUCION:

Espesores en pulg	f	X	fX
0.307 - 0.310	3	0.3085	0.9255
0.311 - 0.314	5	0.3125	1.5625
0.315 - 0.318	5	0.3165	1.5825
0.319 - 0.322	22	0.3205	7.0510
0.323 - 0.326	14	0.3245	4.5430
0.327 - 0.330	1	0.3285	0.3285
	N= 50		$\sum fX = 15.9930$

$$x = 15.9930$$
 50
 $x = 0.3199$

Mediana:

La mediana es el punto central de una serie de datos, para datos agrupados la mediana viene dada por:

Mediana = Li +
$$\frac{(N/2 - \sum fi) c}{fm}$$

EJEMPLO:

Hallar la mediana en los siguientes datos.

25,30,28,26,32

SOLUCION:

Se ordenan en forma creciente o decreciente y se toma el valor central.

25,26,28,30,32

mediana = 28

EJEMPLO:

Hallar la mediana en los siguientes datos:

7, 10,15,13,10,12

SOLUCION:

Al ordenar se tiene: 7, 10,10,12,13,15 pero como el número de datos es par se toma la media aritmética de los dos internos.

$$Mediana = \frac{10 + 12}{2} = 11$$

EJEMPLO:

Hallar la mediana en la siguiente distribución de frecuencias

Espesores en pulg	f	Solucion:
0.307 - 0.310	3	El intervalo 0.319- 0.322
0.311 - 0.314	5	contiene la clase mediana

N=50

Moda

Es aquel valor de mayor frecuencia, la moda puede ser no única e inclusive no existir.

EJEMPLO.

Hallar la moda en los siguientes datos sin agrupar

16,18,15,20,16

SOLUCION:

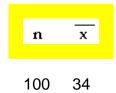
Moda = 16

Para distribuciones de frecuencia la moda viene dada por:

$$Moda = Li + \left(\frac{\Delta 1}{\Delta 1 + \Delta 2}\right) \mathbf{c}$$

EJEMPLO:

Hallar la moda en la siguiente distribución de frecuencias, la cual nos muestra los diámetros en pulgadas de 60 cojinetes de bolas fabricados por una compañía.


Clases	f	Solucion
0.724 - 0.727	5	El intervalo 00.732 - 0.735
0.728 - 0.731	9	contiene la clase modal
0.732 - 0.735	20	$Moda = 0.7325 + \frac{11(.004)}{11+5}$
0.737 - 0.739	15	Moda = 0.7353
0.740 - 0.743	8	
0.744 - 0.747	3	
	N=60	

Media ponderada.

Existe otra medida de tendencia central, la media ponderada.

EJEMPLO:

Considérense los siguientes datos:

50 37

200 35

¿Cuál es la mejor evaluación de la media general?

SOLUCION:

Es necesario emplear la media ponderada.

Media ponderada =
$$34(100) + 37(50) + 35(200)$$

Media ponderada = 35

MEDIDAS DE DISPERSION

Existe otro tipo de medidas que indican la tendencia de los datos a dispersarse respecto al valor central.

Algunas de las medidas de dispersión más usuales son:

- a) Rango, amplitud o recorrido (R)
- b) Desviación estándar (S, muestral; σ, poblacional).
- c) Varianza (S^2 , S^2)
- d) Desviación media (DM).
- e) Coeficiente de Variación (C. V.)

RANGO.

Es la diferencia entre el dato mayor y el dato menor.

DESVIACION ESTANDAR.

La desviación estándar o desviación tipo se define como la raíz cuadrada de los cuadrados de las desviaciones de los valores de la variable respecto a su media.

$$S = \sqrt{\frac{\sum (x - x)^{2}}{N}} \frac{\text{datos no}}{\text{agrupados}}$$

$$S = \sqrt{\frac{\sum f(X - X)^2}{N}} \frac{datos}{agrupados}$$

VARIANZA.

Es el cuadrado de la desviación estándar.

EJEMPLO:

Hallar la desviación estándar y la varianza de la siguiente serie de datos.

SOLUCION:

 $(x-\overline{x})^2$

$$(10-9.5) = 0.25$$

$$(18-9.5) = 72.25$$

$$(15-9.5) = 30.25$$

$$(12-9.5) = 6.25$$

$$(3-9.5) = 42.25$$

$$(6-9.5) = 12.25$$

$$(5-9.5) = 20.25$$

$$(7-9.5) = 6.25$$

$$(x-x) = 190$$

$$S = \sqrt{190}$$

$$S = 4.87$$

$$S^2 = 23.75$$

EJEMPLO:

Hallar la desviación estándar y la varianza para la siguiente distribución de frecuencias.

Clases	f	Solucion	f(X - X) 2
10-15	2	- x = 26.04	2(12.5-26.04) = 366.7
16-21	8		8(18.5-26.04) = 454.8
22-27	13		13(24.5-26.04) = 46.9
28-33	10		10(30.5-26.04) = 168.1
34-39	6		6(36.5-26.04) = 656.5
	39		$\sum f(X - X) = 1693$
			$S = \sqrt{\frac{1693}{39}} = 6.6$
			S = 43.4

Desviación media.

Se conoce también como promedio de desviación. Para una serie de N valores

$$D.M = \frac{\sum \left| x - \overline{x} \right|}{N}$$

se puede calcular a través de la siguiente expresión:

 $\left| \frac{x-x}{x-x} \right|$ = Valor absoluto de las desviaciones de los x valores, respecto de la media.

Y para datos agrupados se tiene:

$$D.M = \frac{\sum f \left| X - \overline{X} \right|}{N}$$

EJEMPLO:

Hallar la desviación media de: 4,6,12,16,22.

SOLUCION:

$$x = 4 + 6 + 12 + 16 + 22 = 12$$

5

| ____

$$4-12 = 8$$

$$6-12 = 6$$

$$12-12 = 0$$
 D.M. $= 28/5 = 5.6$

$$16-12 = 4$$

$$\sum |x-x| = 28$$

EJEMPLO:

Hallar la desviación media en la siguiente distribución de frecuencias.

SOLUCION:

Clases	f	X	fX	f x-x
8-10	3	9	27	3(9-15.8)=20.4
11-13	6	12	72	6(12-15.8)=22.8
14-16	9	15	135	9(15-15.8)=7.2
17-19	11	18	198	11(18-15.8)=24.2
20-22	5	21	105	5(21-15.8)=26
	N=34			$\sum f \left X - \overline{X} \right = 100.6$
		_		

Coeficiente de Variación.

Es la relación que existe entre la S y la X, expresada en términos de porcentaje y se expresa:

EJEMPLO:

Hallar el coeficiente de variación de una serie de datos cuya S= 2 y

$$X = 16.$$

SOLUCION: